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Key Points

• Analyses of recurrent
mutations, copy num-
ber alterations, and
structural variants re-
veal complementary
immune evasion mech-
anisms in cHL.

• The mutational burden
in EBV– cHLs is among
the highest reported,
potentially contributing
to the efficacy of PD-1
blockade.

Classical Hodgkin lymphoma (cHL) is composed of rare malignant Hodgkin Reed-Sternberg

(HRS) cells within an extensive, but ineffective, inflammatory/immune cell infiltrate. HRS cells

exhibit near-universal somatic copy gains of chromosome 9p/9p24.1, which increase

expression of the programmed cell death protein 1 (PD-1) ligands. To define genetic

mechanisms of response and resistance to PD-1 blockade and identify complementary

treatment targets, we performedwhole-exome sequencing offlow cytometry–sortedHRS cells

from 23 excisional biopsies of newly diagnosed cHLs, including 8 Epstein-Barr virus–positive

(EBV1) tumors. We identified significantly mutated cancer candidate genes (CCGs) as well as

somatic copy number alterations and structural variations and characterized their

contribution to disease-defining immune evasion mechanisms and nuclear factor kB (NF-kB),

JAK/STAT, and PI3K signaling pathways. EBV– cHLs had a higher prevalence of genetic

alterations in the NF-kB and major histocompatibility complex class I antigen presentation

pathways. In this young cHL cohort (median age, 26 years), we identified a predominant

mutational signature of spontaneous deamination of cytosine- phosphate-guanines (“Aging”),

in addition to apolipoprotein B mRNA editing catalytic polypeptide-like, activation-induced

cytidine deaminase, and microsatellite instability (MSI)–associated hypermutation. In

particular, the mutational burden in EBV– cHLs was among the highest reported, similar

to that of carcinogen-induced tumors. Together, the overall high mutational burden,

MSI-associated hypermutation, and newly identified genetic alterations represent additional

potential bases for the efficacy of PD-1 blockade in cHL. Of note, recurrent cHL alterations,

including B2M, TNFAIP3, STAT6, GNA13, and XPO1 mutations and 2p/2p15, 6p21.32, 6q23.3,

and 9p/9p24.1 copy number alterations, were also identified in.20% of primary mediastinal

B-cell lymphomas, highlighting shared pathogenetic mechanisms in these diseases.

Introduction

Classical Hodgkin lymphomas (cHLs) include rare malignant Hodgkin Reed-Sternberg (HRS) cells that
are embedded within an extensive inflammatory/immune cell infiltrate. In cHL, tumor cells have a range of
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sizes and shapes and include mononuclear Hodgkin and bi- or
multinuclear Reed-Sternberg cells that exhibit defective cytokinesis.1-3

HRS cells are derived from crippled, largely CD301, pre-apoptotic
germinal center (GC) B cells that lack functional B-cell receptors
(BCRs) and have reduced expression of multiple B-cell transcription
factors.1,4 These tumor cells rely on alternative signaling and survival
pathways, including JAK/STAT and nuclear factor kB (NF-kB), and
exhibit genetic alterations of select pathway components.1,5-10

In 30% to 40% of cHLs in North America and Europe, the malignant
HRS cells have evidence of latent Epstein-Barr virus (EBV) infection
and associated expression of latent membrane protein 1 (LMP1)
and latent membrane protein 2A (LMP2A).1 In these tumors, LMP1
mimics an active CD40 receptor and provides an alternative
mechanism for NF-kB signaling.1 LMP2A facilitates BCR-like
signaling via a cytoplasmic motif that resembles the BCR immunor-
eceptor tyrosine-based activation motif.1

The paucity of malignant HRS cells in primary cHLs has limited
comprehensive genomic characterization of these tumors. Previous
genetic analyses were largely restricted to cHL cell lines, laser-capture
microdissected primary tumors, and a small series of flow-sorted
HRS cells; these studies primarily focused on somatic mutations.6-10

We and others previously identified recurrent gains and amplifications
of chromosome 9p/9p24.1/PD-L1(CD274) and PD-L2(PDCD1LG2)
and associated overexpression of these programmed cell death
protein 1 (PD-1) ligands in cHL.11-13 The 9p24.1 amplicon also
includes JAK2, which further augments JAK/STAT signaling and
PD-1 ligand expression.11,14 These findings provided a genetic
rationale for evaluating PD-1 blockade in patients with cHL and
underscored the importance of somatic copy number alterations
(SCNAs) in this disease. Patients with multiply relapsed/refractory
cHL had overall response rates of ;70% to PD-1 blockade, among
the highest reported response rates for any tumor type.15-18 PD-1
blockade is now being evaluated in earlier treatment settings, including
the frontline therapy of cHL.19

However, the mechanism of action of PD-1 blockade in cHL and the
reasons for its efficacy in this disease are incompletely defined.
In a small pilot study, HRS cells were shown to exhibit frequent
inactivating mutations of B2M that were postulated to limit trans-
port and cell surface expression of major histocompatibility complex
(MHC) class I and associated antigen presentation toCD81 T cells.6 In
several larger series, HRS cells often lacked membranous expression
of b2-microglobulin (b2M) and MHC class I.6,20,21 In these tumors,
HRS cells less frequently lost expression of MHC class II, and
membranous MHC class II was positively associated with a favor-
able response to PD-1 blockade.20,21

Herein, we assess complementary genetic mechanisms of immune
escape and enhanced sensitivity to PD-1 blockade in purified,
flow-sorted primary HRS cells and characterize the comprehen-
sive genetic signature of these cHLs. In a companion article, we
compare and contrast the recurrent genetic alterations in cHL
with those in a related lymphoid malignancy, primary mediastinal
large B-cell lymphoma (PMBL).22

Methods

Patient samples and cell lines

The 23 newly diagnosed primary cHLs were collected at the
University of Washington (supplemental Figure 1; supplemental

Table 1). This study was approved by the Institutional Review
Boards of the University of Washington and Dana-Farber Cancer
Institute. All cHL tumor samples were mechanically dissociated
and cryopreserved as single-cell suspensions as described.23 The
cHL cell lines were cultured in cell line–specific media11 and short
tandem repeat-typed to confirm their identity (https://www.dsmz.de).

Flow cytometry cell sorting

CHL cell suspensions were incubated with a blocking antibody
cocktail (CD2, CD58, CD54 and lymphocyte function-associated
antigen 1 [LFA-1]) for 1 hour on ice before fluorescent antibody
staining and flow cytometry sorting23,24 on the BD FACS ARIA II
cell sorter (supplemental Table 2). All flow sorting experiments were
performed using the 100-mm nozzle at 20 psi with an average of
2000 events per second. HRS cells and normal CD30– B cells
were isolated as described23,25 (supplemental Methods). Isolated
HRS cells were identified by their decreased expression of CD45,
intermediate to bright expression of CD30, CD15, CD40, and
CD95, and the absence of detectable CD64 and CD5 (supple-
mental Figure 2A-B). Paired normal B cells were identified by their
increased CD19 expression and the absence of detectable
CD30 and CD15 (supplemental Figure 2C). For 9 of the 23 cHLs,
additional HRS cell sorting and flow cytometric analyses were
performed using an expanded antibody panel (supplemental
Table 2B).

Library preparation and whole-exome sequencing

Genomic DNA was extracted, and whole-exome sequencing (WES)
was performed using the Agilent SureSelect Human All Exon v5.0
(catalog No. 5190-6208) plus a custom, spiked-in bait set (Agilent
Technologies) for structural variant (SV) detection as described26,27

(supplemental Methods).

Processing and analysis of the WES data

WES data were processed and analyzed as described.26 Steps
included read alignment and quality control, with estimation of
contamination in samples using ContEst (median, 1.8%; range,
0.1%-11%; supplemental Table 1)28 and confirmation of matching
of tumor and normal pairs by mass spectrometric fingerprint
genotyping; removal of artifacts and filtering using a panel of
normals; estimation and correction for tumor-in-normal content29;
mutation calling using MuTect30 followed by significance analysis
to identify mutated CCGs with MutSig2CV31 as well as clustering
in 3-dimensional protein structures (CLUMPS)32; and estimation of
purity and ploidy using ABSOLUTE33 and inferring the cancer cell
fraction (CCF). SVs were identified with an established pipeline26

using BreaKmer,34 Lumpy v0.2.13,35 dRanger,36 and SvABA37

followed by Breakpointer validation.26 Additions or modifications
to previous processing and analyses,26 including determination
of EBV status and copy number evaluation, are described in
supplemental Methods.

Mutational signature analysis. Mutational signature analysis
was performed as described26 with minor adjustments (supplemental
Methods). In brief, a clustering feature threshold of 10 kb for the
nearest mutation distance (NMD) for all single nucleotide variants
with partitioning of clustered (NMD #10 kb) and nonclustered
(NMD.10 kb) groups was used (supplemental Figure 4). The initial
de novo signature extraction for the 23 cHLs was performed as
described26 followed by an enforced semi-supervised signature
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analysis excluding the hypermutators to delineate the 2 apolipopro-
tein B mRNA editing catalytic polypeptide-like (APOBEC) signatures
(COSMIC2 and COSMIC13). The same semi-supervised signature
analysis was performed on the combined cohort of 23 primary cHLs
and cHL cell lines.

Visualization of mutational densities across

tumor types

The mutational density in cHL was compared with that in other
tumor types as described31 and extended to include clonal
mutations and mutations in CCGs as reported.38 Mutation
densities (tumor mutational burden) were corrected for varia-
tions in the number of bases sufficiently covered ($143 in the
tumor and $83 in the normal) by the exome target bait sets
used for each cohort, such that the mutation density is displayed
consistently in units of mutations per Mb across all cohorts.

Gene-by-sample matrix

Morpheus (https://software.broadinstitute.org/morpheus) was used
for visualization of the matrix of samples by recurrent genetic
alterations.

Results

CCGs in cHLs

In this cohort of patients with newly diagnosed cHL, the median age
was 26 years (range, 10-75 years) and the sexes were balanced;
83% (19 of 23) of the patients had nodular sclerosis Hodgkin
lymphoma (NSHL) and 17% (4 of 23) had mixed cellularity (MC) HL
(supplemental Figure 1). Thirty-five percent (8 of 23) of the primary
cHLs were EBV1 and 65% (15 of 23) were EBV– (supplemental
Figure 1; supplemental Table 1).

To isolate the rare HRS cells from these primary cHL tumor cell
suspensions, we used an established multicolor flow cytometric
sorting strategy23,24 (supplemental Figure 2) and obtained a median
of 1262 HRS cells (range, 465-3832 HRS cells) per cHL specimen.
We performedWES of the 23 purified HRS cell samples and obtained
a mean target read coverage of 503 (range, 20.76-178.94X);
a mean number of coding mutations of 227 (range, 61-3524 coding
mutations); and a mean allele fraction of 0.35 (range, 0.12-0.44 allele
fractions) (supplemental Table 1). Thereafter, we appliedMutSig2CV31

using a false discovery rate threshold of 10%, and we identified 15
CCGs (Figure 1; supplemental Table 3). Five CCGs were found by
the CLUMPS algorithm,32 which identifies genes with significant
mutational clustering within 3-dimensional protein space (q, 0.25)
(Figure 1B-C; supplemental Figure 3A). Of note, 3 of the CCGs
defined by CLUMPS were not captured by MutSig2CV (supple-
mental Figure 3; supplemental Table 3). A comparison of the
identified CCGs in this series and previously reported mutations in
cHL6,7,10 is included in supplemental Table 4.

The most significantly mutated CCG, B2M, was perturbed by
missense and truncating mutations in 39% of tumors (Figure 1A,D).
Such alterations likely impair the transport of MHC class I
molecules/b2M to the cell surface, as described6,7,9,10,20,21,39

(supplemental Table 4). An additional potential basis of perturbed
MHC class I function was the newly identified truncating and
missense mutations of HLA-B in 17% of cHLs (Figure 1A,D).

We defined additional CCGs with known roles in the biology of
cHL, including negative regulators of NF-kB signaling, NFKBIE,

NFKBIA, and TNFAIP35,6,8,10 (Figure 1A,D; supplemental Table 4).
In NFKBIE (26% cases), NFKBIA (17% cases), and TNFAIP3
(26% cases), mutations were largely truncating (Figure 1D). This
cohort of cHLs also exhibited missense mutations in IKBKB (13%
cases), including V203I, a gain-of-function mutation in the encoded
inhibitor of k kinase B (IKK), which phosphorylates IKBa and
liberates associated NF-kB molecules (Figure 1A,D; supplemental
Table 4).10,40

Additional described cHL CCGs encode the JAK/STAT pathway
components STAT6 and SOCS16,10,41-44 (Figure 1A,D; sup-
plemental Table 4). STAT6 alterations (35% cases) primarily
involved known mutational hotspots in the DNA binding domain
(D419G/H/N and N421S)7,10,45,46 (Figure 1A-B,D). The largely
truncating or missense mutations of SOCS1 (70% cases) spanned
the entire coding sequence, consistent with the known role of the
encoded tumor suppressor protein in this disease7,41,42 (Figure 1A,D).
In our series, 22% of the cHLs also exhibited largely truncating (4 of 5)
or missense mutations of PTPN1 (false discovery rate q 5 0.36,
exceeding our discovery threshold of q5 0.1; supplemental Figure 3B;
supplemental Table 3), a known negative regulator of JAK/STAT
signaling.47,48 In 17% of cHLs, we also identified previously described
mutations in CSF2RB (Figure 1A,D; supplemental Table 4),6 which
encodes the common b chain of the granulocyte-macrophage colony-
stimulating factor and interleukin-3 and interleukin-5 receptors. All of
these receptors signal via the JAK/STAT pathway.49

We defined additional CCGs that were described in cHL, other
lymphomas, and/or solid tumors, including XPO1, RBM38,GNA13,
ACTB, and ARID1A.6,7,10 XPO1 encodes an importin-b superfamily
member and nuclear export protein that translocates multiple cargo
proteins, including STAT6, from the nucleus to the cytoplasm.50,51

The recurrent XPO1 E571K mutation in 26% of cHLs (Figure 1A,D)
is located close to the hydrophobic groove responsible for cargo
recognition. This alteration has been described in multiple hemato-
logic malignancies, including cHL and PMBL.7,10,22,50-52

RBM38 encodes an RNA-binding protein and a reported
tumor suppressor that modulates gene expression by binding
to adenylate-uridylate/uridylate-rich elements in the 39 untranslated
region of target transcripts.53-55 Of interest, murine Rbm38 defi-
ciency promotes accelerated aging and lymphomagenesis, in
part by destabilizing PTEN transcripts and decreasing PTEN
protein expression.55,56 In 17% of analyzed cHLs, there are
previously unreported truncating or missense mutations of RBM38
(Figure 1A,D). Functional studies will be required to deter-
mine whether RBM38 alterations represent a potential basis for
enhanced PI3K signaling in these tumors.

An additional 26% of the analyzed cHLs had truncating or missense
mutations of GNA13, which abolished polar interactions around
the catalytic pocket (Figure 1A,C-D; supplemental Table 4). Such
alterations have been described in cHL6,7,9,10 and additional GC
B-cell derived diffuse large B-cell lymphoma (DLBCL) and Burkitt
lymphomas.57-59 The encoded protein, Ga13, transmits G-protein
coupled receptor signals, activates RHO family members, and inhibits
associated cellular migration and AKT-dependent pathways.57-59 In
murine models, Ga13 deficiency was associated with GC B-cell
expansion and dissemination, enhanced AKT signaling, and an
increased incidence of B-cell lymphomas.58,59

In these multinuclear HRS cells, which are postulated to
have defective RHOA– and b actin–dependent cytokinesis,1-3,60
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Figure 1. Recurrently mutated genes in cHL. (A) A coMut plot100 of the CCGs in 23 primary cHLs indicating the number and frequency of recurrent mutations (left), color-

coded mutated genes (center), with ranking by significance (MutSig2CV q value) (right). Coding nonsynonymous mutational density (log10[#mutations]) for each primary case

is indicated at the top; allelic frequency and mutation type are noted below. *Indicates 2 hypermutated cases. (B-C) Genes identified by CLUMPS included STAT6 (protein

data bank [PDB]: 4y5w; http://www.rcsb.org/) (B) and GNA13 (PDB: 3ab3) (C), which exhibited significant spatial clustering in protein structures. STAT6 dimer is shown with

molecules in gray and cyan, respectively, and mutated residues in red. Color intensity and thickness of line scales with the number of mutations. Co-crystalized small molecules

are shown in blue (GDP). (D) Mutation diagrams (lollipop figures) of the 15 significantly mutated genes identified in panel A. Positions within the genes perturbed in multiple

cHLs ($2) are labeled.
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we detected missense mutations ofACTB (Figure 1A,D; supplemental
Table 4).6 CLUMPS revealed additional alterations in EEF1A1
(supplemental Figure 3A; supplemental Tables 3 and 4),6 which
encodes a translation factor implicated in chromosome conden-
sation and tetraploid cell formation.61 EEF1A1 is also recurrently
mutated in follicular lymphoma62 and inactivated by translocation
in DLBCL.26

We identified truncating and splice site mutations of ARID1A in
26%of the primary cHLs (Figure 1A,D; supplemental Table 4).ARID1A
encodes a subunit of the chromatin remodeling SWItch/sucrose
non-fermentable (SWI/SNF) complex, which is a known tumor
suppressor in multiple solid tumors63-68 and certain hematologic
malignancies, including follicular lymphoma.10,45,69,70 Of interest,
ARID1A deficiency was recently associated with increased mutation
load and enhanced responsiveness to PD-1 blockade.69 The majority
of identified CCGs in primary cHLs (Figure 1A) were also mutated in
6 cHL cell lines that are often used as model systems of the disease
(supplemental Figure 3C).

Mutational signature analysis

To gain insights into putative mutational processes in cHL, we
applied our SignatureAnalyzer tool,71,72 which detects mutational
signatures while taking into account clustering of the mutations
along the genome and the 3-base context of the mutations. We
initially identified 2 different microsatellite instability (MSI) signa-
tures (COSMIC6 and COSMIC15; https://cancer.sanger.ac.uk/
cosmic/signatures_v2), an activation-induced cytidine deaminase
(AID) signature, and a mixed signature composed of spontaneous
deamination at cytosine-phosphate-guanines (CpGs) (hereafter
termed “Aging”) and APOBEC (supplemental Figure 4A; supplemental
Table 5).73,74

The two MSI cases were noted to be hypermutators (Figure 1A,
top). One of these tumors (c_cHL_4) harbored both a splice site
and a nonsense mutation inMSH3 (chr5:79974914T.C and chr5:
80160722G.T, respectively). The other MSI case (c_cHL_24) had
a homozygous deletion inMSH2 in addition to a nonsense mutation
in ARID1A.

To deconvolute the Aging and APOBEC signatures, we removed
the 2MSI cases and reidentified the mutational signatures in a semi-
supervised manner (supplemental Methods; Figure 2A). In tumors
from this predominantly young patient cohort, spontaneous deam-
ination at CpG (Aging) was the most frequent mutational signature,
followed by APOBEC (COSMIC2 and COSMIC13) and AID
(Figure 2A-C). There was no association between the patient’s age
at diagnosis and the number of mutations attributed to the Aging
signature (supplemental Figure 4B), prompting speculation regard-
ing an early increase in the division rate of HRS cells or other
mechanisms that could increase CpG deamination in cHL.

We next determined the relative contribution of the predominant
mutational processes (Aging, APOBEC, and AID) to each of the
15 CCGs in our cHL cohort (Figure 2D) as described.26 Known
targets of aberrant somatic hypermutation, such as SOCS141,42

had preponderant AIDmutational signatures as didRBM38 (Figure 2D).
Although STAT6 is not a known target of aberrant somatic hyper-
mutation, a subset of the identified STAT6mutations had features of
an aberrant AID mutational signature (supplemental Figure 4C). In
contrast, genes including NFKBIA, NFKBIE, XPO1, CSFR2B, and
ARID1A had predominant Aging mutational signatures (Figure 2D).

We did not observe the reported cHL cell line mutational signature
COSMIC25 (https://cancer.sanger.ac.uk/cosmic/signatures_v2) in
our series of primary cHLs (Figure 2A,C; supplemental Figure 4A).
For this reason, we leveraged our own cHL cell line data and
performed a new mutational signature analysis on the com-
bined series of primary cHLs and cHL cell lines (supplemental
Figure 4D-E). In addition to the signatures detected in primary
cHLs, we found 2 additional mutational patterns, COSMIC25
and COSMIC11, that were largely restricted to cHL cell lines
(supplemental Figure 4D-E). Because COSMIC11 reflects the
DNA damage of alkylating agents, the COSMIC11 and COSMIC25
cell line signatures may be more closely associated with previous
treatment and/or in vitro growth conditions than primary trans-
forming events specific to cHL.75

Somatic copy number alterations and

chromosomal rearrangements

We next assessed recurrent SCNAs in the primary cHLs with the
GISTIC2.0 program76 and detected 13 recurrent SCNAs, in-
cluding 6 copy gains (2 focal and 4 arm level) and 7 copy losses
(6 focal and 1 arm level) (Figure 3A). The frequency of focal SCNAs
in our primary cHL cohort ranged from 9% to 52%; these SCNAs
harbored a median of 78 genes in focal peaks (range, 21 to 778 genes
in focal peaks). Using the COSMIC Cancer Gene Census database
(http://cancer.sanger.ac.uk/cosmic [v88 cancer_gene_census]),
we identified candidate driver genes that reside within these
focal SCNAs (supplemental Table 6).

When assessing the recurrent SCNAs, we observed that specific
CCGs could be perturbed by arm-level copy gain or loss as well
as focal SCNAs (Figure 3A-C). For example, XPO1 was mutated
in 26% of the cHLs (Figure 1) and additionally altered by SCNAs,
including arm-level gain of 2p and focal amplification of 2p15
(Figure 3A-B). Consistent with previous reports,6,11,12,21 we
observed frequent arm-level 9p gain and focal amplification of
the 9p24.1/PD-L1/PD-L2/JAK2 region in the primary cHLs (Figure 3A;
supplemental Figure 5A; supplemental Table 4). In addition, TNFAIP3
was perturbed by mutations in 26% of tumors (6 of 23)6 (Figure 1)
and 6q arm-level or 6q23.3 focal copy loss in 74% of cHLs (17 of
23) (Figure 3A,C; supplemental Table 4).

We identified 6 SCNAs (arm-level gain of 5p and 5q, focal loss of
1p36.32, 6p21.32, 6q23.3, and arm-level loss of 6q) that were
recently described in DLBCL26 as well as focal gain of 5p15.3377,78

and focal loss of 6q1279 that were reported in lung and pros-
tate cancer, respectively. The focal region of 1p36.32 copy loss
includes TNFRSF14 (Figure 3A),80,81 which is one of the most
frequently mutated genes in GC-derived B-cell lymphomas.26,82

Of interest, loss of TNFRSF14 and its encoded cell surface
receptor HVEM leads to cell-autonomous B-cell activation and
the development of GC B-cell lymphoma in vivo.82

By using our recently described computational pipeline,26 we
identified specific SVs in the primary cHLs, including those
involving ETV6 (17% [4 of 23]) andCIITA (8% [2 of 23]) (Figure 3D-E;
supplemental Tables 4 and 7). ETV6 is a reported fusion partner in
up to 30 different translocations in hematopoietic malignancies.83

In the primary cHL cohort, ETV6 deletions and inversions pre-
dominantly involved exon 3, which encodes the helix-loop-helix
and homodimerization domain of this transcriptional repressor
(Figure 3F).83 Structural analyses of ETV684 suggest that the
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identified exon 3 alterations abrogate ETV6-mediated transcrip-
tional repression.

Consistent with previous reports, SVs in CIITA included a tandem
duplication (supplemental Figure 7) and a balanced translocation
with HLA-DQB1 (Figure 3D), the latter likely leading to inactivation
of CIITA and decreased MHC class II expression.85,86 We also
identified translocations that juxtaposed genes with known roles
in GC B-cell biology, such as BCOR, to IgH (IgH-Any, 26%) in this
primary cHL series (Figure 3D-E; supplemental Figure 5B).

Co-occurrence of genetic alterations

Co-occurring genetic alterations in EBV1 and EBV– cHLs
and cHL cell lines. The cHLs in our series had a median of 11
recurrent genetic drivers (range, 3-16 drivers) prompting further

analysis of co-occurring alterations in the primary cHLs (Figure 4A)
and cHL cell lines (Figure 4B). Although the majority of HRS cell
samples exhibited 2p/2p15 and 9p/9p24.1 copy gain, 6q/6q23.3
copy loss, and SOCS1 somatic mutations, 2-way hierarchical
clustering revealed additional genetic substructure (Figure 4A, left
and right branches). Of interest, this objectively defined genetic
substructure delineated EBV1 tumors (left branch) from EBV– cHLs
(right branch, Figure 4A, top; supplemental Table 8). In this series,
as in others,87 the primary MC cHLs were largely EBV1 (Figure 4A,
top). Notably, there were fewer recurrent genetic alterations in the
EBV1 than the EBV– cHLs (P 5 .011, Mann-Whitney U test) and
fewer driver events in the 4 MC cHLs than the NSHLs (P 5 .008)
(Figure 4A,C), as previously described.7 There were no significant
differences in the sequencing mean target coverage between the
EBV1 and EBV– tumors (P 5 .55) or between the MC cHLs and
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NSHLs (P 5 .37), suggesting that the quantitative differences in
driver events in these cHL subsets were disease related.

EBV1 HRS cells are known to express LMP1, which binds tumor
necrosis factor receptor–associated factors and activates NF-kB.5,88

As a consequence, EBV1 cHLs are reported to be less reliant on
genetic enhancement of NF-kB signaling.5,8 Consistent with earlier
studies,6,8 we found that EBV positivity and TNFAIP3 inactivation
via mutation or focal copy loss were mutually exclusive in our
primary cHLs (TNFAIP3 mutation and/or focal-copy loss, EBV–

(9 of 15 [60%]) vs EBV1 (0 of 8 [0%]) (P5 .0061; Figure 4A). In
comparison with EBV1 cHLs, EBV– cHLs were significantly more
likely to have inactivating B2M mutations, HLA-B mutations, or
high-level focal copy loss of 6p21.32/HLA-B (P5 .0084) (Figure 4A,D).
The latter findings provide potential structural bases for the
reported differences in cell surface expression of MHC class I in
EBV1 and EBV– cHLs.20

ARID1A-mutant cHLs (both EBV1 and EBV–) had a significantly
higher number of candidate driver events than ARID1A wild-type
cHLs (P 5 .012; P 5 .038 without hypermutators) (Figure 4C;

supplemental Figure 6), which is also of interest, given the reported
association between ARID1A deficiency, increased mutation load,
and sensitivity to PD-1 blockade.69

Structural basis for decreased MHC class II expression
in cHL. After identifying potential genetic bases for previously
reported perturbed MHC class I expression in cHL (Figure 4D),20,21

we analyzed MHC class II expression in our genetically character-
ized cHLs. In the 9 cHLs with additional available samples, we
used a flow cytometric approach with an expanded antibody panel
(supplemental Table 2) to assess HRS cell surface expression
of MHC class II (supplemental Figure 7). HRS cell expression of
MHC class II was compared with that on MHC class II–negative
normal infiltrating T cells and MHC class II–positive normal infiltrating
B cells from the same primary tumor cell suspensions (supplemental
Figure 7). cHLs with decreased HRS cell expression of MHC class II
were significantly more likely to haveMHCII copy loss than cHLs with
intact HRS cell expression of MHC class II (P 5 .048, Fisher’s exact
test; Figure 4E; supplemental Figure 7). These data are of particular
interest because we previously reported that HRS cell surface
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expression of MHC class II, but not MHC class I, was predictive for
response to PD-1 blockade.21

Key pathways perturbed by multiple genetic mechanisms.
By analyzing all genetic driver alterations, we observed that multi-
ple components of key cHL signaling pathways were perturbed
by different genetic mechanisms, including mutations, SCNAs, and
SVs (Figures 4A and 5). For example, genetic bases of immune
evasion included recurrent inactivating mutations of B2M and
HLA-B, focal deletion of 6p21.32/HLA-B and the extended MHC
class I and class II chromosome regions (6p21.32-6p21.33), and
inactivating SVs ofCIITA (Figures 4A,D and 5). In addition to genetic
alterations of MHC class I and class II antigen presentation path-
way components, cHLs exhibited 1p36.32/TNFRSF14 copy loss as
described81 (Figures 4A and 5). Of note, TNFRSF14 deficiency has
been reported to disrupt B- and T-lymphocyte attenuator inhibitory
T-cell signals and induce a tumor-supportive microenvironment in
GC B-cell lymphomas (Figure 5).81,82

In addition, the primary cHLs exhibited recurrent 9p/9p24.1 copy
gain (Figures 4A and 5), which is known to increase PD-1 ligand
expression and associated PD-1 signaling.11,12,21 Chromo-
some 9p/9p24.1 copy gain also augments JAK2 abundance and
JAK/STAT-dependent programmed death-ligand 1 (PD-L1) expres-
sion (Figure 5).14 In the primary cHLs, other known genetic bases
of enhanced JAK/STAT signaling included activating STAT6
mutations and inactivating SOCS1 and PTPN1 mutations41,42;
additional potential mechanisms included CSFR2B mutations,

18q22.2/SOCS6 copy loss, and altered XPO1-dependent
STAT6 transport (Figures 4 and 5).50,51

The primary cHLs also exhibited multiple NF-kB pathway alter-
ations: TNFAIP3 mutations and focal 6q23.3/TNFAIP3 or arm-level
6q copy loss; NFKBIE mutations and 6p21.32/NFKBIE copy loss;
NFKBIA mutations and IKBKB mutations; and likely bases of
enhanced PI3K signaling such as GNA13 and RBM38 mutations
(Figures 4A and 5). The majority of the identified candidate drivers
in primary cHLs were also detected in cHL cell lines (Figure 4B).

Temporal ordering of genetic events and mutational

burden in cHL

We next determined the purity and ploidy for each primary cHL
using ABSOLUTE, and we calculated the cancer cell fraction
(CCF) for each genetic driver event (supplemental Table 9). The
enriched HRS cell samples had a median purity of 78% and
a median ploidy of 3.13 (range, 1.65-5.84 ploidy), which aligns
with multinucleated structure of these tumor cells.89,90 Although
there was no association between ploidy and the overall mutational
burden (P 5 .3421) in the primary cHLs, ploidy and the number
of driver events were significantly correlated (P5 .0096) (supplemental
Figure 8).

We classified each recurrent genetic alteration (CCGs, SCNAs
with q , 0.1, and SVs occurring $2 times) as clonal or subclonal
by using a CCF threshold of 0.9 (Figure 6). The majority of these
alterations, including each of the CCGs and the 18q22.2, 6q23.3,
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1p36.32, 6p21.32, 9p/9p24.1 and 2p/2p15 SCNAs, were clonal,
suggesting that they were early pathogenetic events (Figure 6).

Comparison with other cancer subtypes

We next compared the genetic landscape of primary cHL (Figure 4) to
that of a related cancer type, PMBL, described in a companion paper.22

In previous studies, we and others defined common transcriptional
signatures and key signaling and immune evasion pathways in these
cancers.11,14,91-94We usedmirror bar plots (Figure 7A) to compare the
frequencies of the recurrent genetic alterations in cHL (Figure 4) to
those in PMBL.22 Like cHL, PMBL exhibited recurrent alterations of
B2M, TNFAIP3,CSF2RB, XPO1,STAT6,GNA13, and chromosomes
2p/2p15 (2p16.1), 6p21.32, 6q23.3, and 9p/9p24.1 (Figure 7A),
highlighting the shared genetic features of these diseases.22

Thereafter, we sought to compare the tumor mutational burden
(7.66 mutations per Mb) in primary cHLs to that in other cancers
with available WES data31 (Figure 7B). The observed differences
in numbers of driver events (Figure 4C) and mutational density
(supplemental Figure 9) in EBV1 and EBV– cHLs prompted us to
analyze these cHL subsets separately (Figure 7B). The median
frequency of coding mutations in EBV– cHLs was among the
highest described, comparable to that in carcinogen induced-tumors
such as squamous cell lung carcinoma and melanoma (Figure 7B).
These findings (Figure 7B) provide an additional potential basis for
the sensitivity of cHLs to PD-1 blockade.

Discussion

Our comprehensive genomic analyses of flow cytometry–sorted
HRS cells reveal complementary mechanisms—mutations, SCNAs,
and SVs—of immune escape, NF-kB activation, and enhanced
JAK/STAT and PI3K/AKT signaling in cHL (Figure 5). Our studies
extend the findings in previously reported genetic analyses of cHL6,7,10

by using prioritization methods to identify bona fide CCGs and
additional approaches to characterize mutational signatures, tumor
mutational burden, recurrent focal and arm-level SCNAs, SVs, and
co-occurring genetic legions to derive novel insights regarding the
comprehensive genetic signature of cHL (supplemental Table 4).

Comparison of EBV– and EBV1 cHLs confirms that EBV– tumors
are significantly more likely to exhibit genetic alterations of specific
NF-kB signaling intermediaries and MHC class I antigen presen-
tation pathway components (Figure 4). Of particular interest, the
mutational burden in EBV– cHLs is among the highest reported,
similar to that in carcinogen-induced tumors (Figure 7).

Additional previously unappreciated aspects of the cHL genetic
signature include the likely role of ARID1A alterations in driver
mutational events (Figure 4C),69 the predominant Aging muta-
tional signature95 in this young patient population (Figure 2), and
potential genetic mechanisms of defective cytokinesis2,3,60,61 in
multinucleated HRS cells (Figure 5; supplemental Figure 3).

Importantly, the high mutational burden in EBV– cHLs and the
genetically driven JAK/STAT signaling and MSI signatures in
EBV– and EBV1 cHLs may be additional bases, beyond 9/9p24.1
SCNAs,11,20,21 for the sensitivity of these tumors to PD-1 blockade.
In contrast, genetic alterations that decrease PTEN abundance
and/or enhance PI3K signaling potentially limit the efficacy of
PD-1 blockade96,97 in affected cHLs. In addition, the pervasive
genetic alterations of MHC class I antigen presentation pathway
components in EBV– cHLs (Figure 4) highlight the likely role of

non-CD81 T-cell effector mechanisms98,99 in PD-1 blockade
in these tumors. The comprehensive cHL genetic landscape,
including recurrent SCNAs and SVs, can now be translated into
targeted assays of primary tumors and circulating tumor DNA10

to delineate bases of response and resistance to immunomod-
ulatory therapy in pivotal clinical trials.
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